
ISSN No. (Print): 0975-1718
ISSN No. (Online): 2249-3247

Complex Order – Distribution and Caputo Fractional Derivatives
of the I-Function

Dr. Arif M. Khan
Department of Mathematics,

Jodhpur Institute of Engineering and Technology, Jodhpur, (RJ), India

(Received 05 November, 2012, Accepted 02 December, 2012)

ABSTRACT: The concept of complex order-distribution & conjugated differ integrals was
developed by Adams, Hartley & Lorenzo [1]. The present paper deals with the complex order-
distribution using conjugated differintegrals of the I-Function. These conjugate-order differ integrals
involving the I-Function allows the generalization of fractional system identification to enables the
search for complex order-derivatives that may better describe real-time behaviors involving special
functions. Further Caputo fractional derivative of I-function also obtained. Due to generous nature
of I-function, this paper may have vast applications in signal processing & electrical systems.
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I. INTRODUCTION AND DEFINITIONS

Order distributions were introduced by Hartley &
Lorenzo as the continuum extension of collections
of fractional order operators for real or non real
orders. The idea of conjugate-order differintegrals
is utilized to ensure that only real time responses
are considered, while using complex order
distributions.
Fractional operators for non integers real or
complex have been studied by few [5, 7].

The aim of this paper is the development of
complex order differ integrals which yield purely
real time-response and construct Caputo fractional
derivatives of the I-function.
The I-function which was introduced by Saxena
[9] is an extension of Fox's H-function. On
specializing the parameters, I-function can be
reduced to almost all the known as well as
unknown special functions.

Definition 1.1: The definition of I-function given by Saxena [9] is as follows:
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pi (i = 1, 2, ..... r), q i (i = 1, 2, .....r), m, n are integers satisfying 0 ≤ n ≤ pi, 0 ≤ m ≤ qi (i = 1, 2, ..... r) r is
finite αi, βi, αji, βji are real and positive and aj, bj, aji, bji are complex numbers such that αj (bh + v) ≠ βj (ah –
1 – k) with all necessary conditions for existence as given by Saxena [9].
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Definition 1.2: Euler transform of the I-function can easily be established using result given by Srivastava
[10]

( ) 







βββ
αααβ−αΓ=− +

++β
−β−αα−∫ )1,)(,b)(,b(

),a)(,a)(1,(
xI

x

)(
dy]y[Iyxy

jijijj

jijijj1n,m
r;1q,1p

x

0

n,m
r;q,p

1

iiii
... (1.2)

with the convergence conditions [10].
Definition 1.3: Laplace transform of an I-function given by Vaishya, Jain & Verma [11]
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where Ra (β ) > 0

II. COMPLEX DIFFER INTEGRALS OF I-FUNCTION
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then its qth order fractional integral is defined as
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By using (1.2) we get
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In general the complex differintegral for f(τ) given by (2.1) is defined as

g1 (t) = )τ(d)τ(fd )ivu(
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Laplace transform of g1 (t) is given by Kober [6]
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where, Re(s) > 0
From (2.3)

G1(s) = ( ) ( )[ ] )s(Fslogvsinislogvcossu + ... (2.5)

III. CONJUGATED ORDER DIFFERINTEGRALS

The conjugated order fractional integral may be expressed for negative real order as
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Hence by (3.2) the conjugated differintegral has purely real time response.
Likewise, the complementary conjugated differintegral is define has
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Representing in Laplace domain
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which is purely imaginary operator.

IV. COMPLEX ORDER DISTRIBUTION DEFINITION

Adams, Hartley & Lorenzo [1] defined the complex order distribution as
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The equation can be Laplace transformed as
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A. Blockwise constant complex order-distribution
Let consider complex order-distribution that are constant intensity, k symmetric about the real axis
from uu δ− to uu δ+ and from –iδv to +iδv.

So from (4.2)
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V. CAPUTO FRACTIONAL DERIVATIVES OF THE I-FUNCTION

Lorenzo and Hartley (LH) [5] have discussed the following initialization of Riemann-Liouville Fractional
Differintegral
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the generalized fractional derivative
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The Caputo fractional derivative defined by [3] as
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Further Achar, Lorenzo and Hartley [8] given following relation
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In this section we try to construct an above relation for I-function
Let f (τ) is given by (2.1)
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Comparing above result with equation (5.5) we get an interesting result
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where 0 < α < 1

which is Caputo fractional derivative of function involving I-function
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VI. CONCLUSIONS

Conjugated order differintegrals with I-function
have been defined in the time-domain and their
Laplace transforms obtained. The conjugated order
differintegrals discussed in the paper allows the use
of complex order operators while retaining real
time responses.
Further complex order distribution involving I-
function introduced and block wise constant
complex order distribution presented in the Laplace
domain.
From this study of complex order distributions
involving I-function we can better describe the
behavior of some real dynamic systems. In final
section paper addresses the Caputo fractional
derivatives of the I-function that has vast
applications to solution of fractional differential
equation.
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